
DeepTrust: An Automatic Framework to Detect Trustworthy
Users in Opinion-based Systems

Edoardo Serra
edoardoserra@boisestate.edu
Computer Science Department

Boise State University
Boise, Idaho

Anu Shrestha
anushrestha@u.boisestate.edu
Computer Science Department

Boise State University
Boise, Idaho

Francesca Spezzano
francescaspezzano@boisestate.edu
Computer Science Department

Boise State University
Boise, Idaho

Anna Squicciarini
acs20@psu.edu

Information Sciences and Technology
Pennsylvania State University

University Park, PA

ABSTRACT
Opinion spamming has recently gained attention as more and more
online platforms rely on users’ opinions to help potential customers
make informed decisions on products and services. Yet, while work
on opinion spamming abounds, most efforts have focused on de-
tecting an individual reviewer as spammer or fraudulent. We argue
that this is no longer sufficient, as reviewers may contribute to an
opinion-based system in various ways, and their input could range
from highly informative to noisy or even malicious.

In an effort to improve the detection of trustworthy individuals
within opinion-based systems, in this paper, we develop a super-
vised approach to differentiate among different types of review-
ers. Particularly, we model the problem of detecting trustworthy
reviewers as a multi-class classification problem, wherein users
may be fraudulent, unreliable or uninformative, or trustworthy.
We note that expanding from the classic binary classification of
trustworthy/untrustworthy (or malicious) reviewers is an interest-
ing and challenging problem. Some untrustworthy reviewers may
behave similarly to reliable reviewers, and yet be rooted by dark
motives. On the contrary, other untrustworthy reviewers may not
be malicious but rather lazy or unable to contribute to the common
knowledge of the reviewed item.

Our proposed method, DeepTrust, relies on a deep recurrent
neural network that provides embeddings aggregating temporal
information: we consider users’ behavior over time, as they review
multiple products. We model the interactions of reviewers and the
products they review using a temporal bipartite graph and consider
the context of each rating by including other reviewers’ ratings

The authors are listed in alphabetic order.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7107-0/20/03. . . $15.00
https://doi.org/10.1145/3374664.3375744

of the same items. We carry out extensive experiments on a real-
world dataset of Amazon reviewers, with known ground truth about
spammers and fraudulent reviews. Our results show that DeepTrust
can detect trustworthy, uninformative, and fraudulent users with
an F1-measure of 0.93. Also, we drastically improve on detecting
fraudulent reviewers (AUROC of 0.97 and average precision of 0.99
when combining DeepTrust with the F&G algorithm) as compared
to REV2 state-of-the-art methods (AUROC of 0.79 and average
precision of 0.48). Further, DeepTrust is robust to cold start users
and overperforms all existing baselines.

CCS CONCEPTS
• Information systems→Reputation systems; • Security and
privacy → Trust frameworks.

KEYWORDS
Trustworthy user detection, Deep learning, Temporal embedding,
Fraudulent users, Opinion-spammer detection

ACM Reference Format:
Edoardo Serra, Anu Shrestha, Francesca Spezzano, and Anna Squicciarini.
2020. DeepTrust: An Automatic Framework to Detect Trustworthy Users
in Opinion-based Systems. In Proceedings of the Tenth ACM Conference on
Data and Application Security and Privacy (CODASPY ’20), March 16–18,
2020, New Orleans, LA, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3374664.3375744

1 INTRODUCTION
Opinion-based systems rely on users’ collective opinion to rank
or rate products, services, or even other users’ qualifications or
qualities (e.g., editors, programmers, micro-task workers). Such a
crowdsourced approach allows for transparency and enables in-
formed choices for other users interested in learning about certain
reviewed items (or services). Underpinning such a system is an
inherent expectation of trust on the participants’ willingness and
commitment to compile reliable and unbiased reviews accounting
for their own experience with the item being reviewed. Although
this expectation is generally met, research has consistently shown
how these platforms are polluted by unreliable reviews that are
either fraudulent, uninformative or inaccurate [4, 6, 16].

Session 1: Trusted Environment CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

29

https://doi.org/10.1145/3374664.3375744
https://doi.org/10.1145/3374664.3375744
https://doi.org/10.1145/3374664.3375744

CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA Edoardo Serra, Anu Shrestha, Francesca Spezzano, and Anna Squicciarini

Figure 1: Distribution of the Amazon rank among fraudu-
lent reviewers in the dataset from Section 4.

Malicious actors use underground Internet sites to recruit fake
reviewers, who are given strict guidelines on the type of review to
write, so as to generate relatively high-quality reviews - that are
difficult to ascertain from authentic reviews [16]. This makes the
detection of rogue reviews a non-trivial task. Existing user-led en-
dorsement features offered by these platforms (e.g., "Is this review
helpful?" in Amazon) are often unable to single out bogus reviews.
Figure 1 shows the distribution of the Amazon rank for fraudu-
lent (or opinion-spam) users on a selected dataset of fraudulent
reviewers (see Section 4). Amazon ranks each reviewer according to
peer-rated helpfulness. The lower the rank, the better the reviewer
is. A reviewer’s rank is determined by the overall helpfulness of all
their reviews, factoring in the number of reviews they have written,
and, more recently, a review is written, the greater its impact on
rank 1. As Figure 1 shows, while the majority of the fraudulent
users have a high rank, some of them are sophisticated enough to
fuel the ranking system and camouflage as top-reviewers.

Opinion-based platforms have strong interests in identifying the
best (and worst) contributors of their sites, to block or filter fraud-
sters, and to provide incentives to reviewers who contribute with
honest and accurate information. In an effort to improve the detec-
tion of trustworthy individuals within opinion-based systems, in
this paper, we focus on classifying reviewers based on their behav-
ioral patterns and feedback they received from other peer reviewers.
Particularly, we model the problem of detecting trustworthy review-
ers as a multi-class classification problem, wherein the possible
classes of users include fraudulent, unreliable (or uninformative),
and trustworthy. Here, by trustworthy, we refer to individuals who
positively contribute to the opinion-based system by means of pro-
ductive content and, therefore, whose reviews can be trusted as
informative and useful. Fraudulent reviewers are instead malicious
in nature, in that truly uploaded to affect the ranking of a prod-
uct or a seller’s reputation. For instance, let us consider user u2 in
Figure 2. This user is fraudulent as she/he is trying to demote p2,
which is a generally liked product and promote p3, which other
users consider a bad product. Finally, unreliable reviewers are users
whose reviews are "noisy" in that they are not informative or of
generally poor quality (e.g., inaccurate or generic). Further, as some
reviewers may not have sufficient historical records to ascertain

1https://www.amazon.com/gp/customer-reviews/guidelines/top-reviewers.html

Figure 2: Sample user-item bipartite rating network (ti ≤ tj
if i ≤ j).

their nature reliably, we also consider a class of “unknown” users,
whose true behavioral patterns is not well-supported by data. We
classify such users based on their limited history or information.

We note that expanding from the classic binary classification
of trustworthy/untrustworthy (or malicious) reviewers to a multi-
class setting gives rise to an interesting and challenging problem.
Untrustworthy reviewers may be rooted by a variety of motives, and
be either perceived as uninformative or unreliable, or be actually
malicious. Hence, natural language processing may not be sufficient
nor accurate.

Our proposed approach accounts for users’ behavior over time,
as they review multiple products by means of temporal embeddings.
Wemodel the interactions of reviewers and the products they review
using a temporal review sequence and consider the context of each
interaction by including other reviewers’ interactions with the same
items.

Precisely, we propose DeepTrust, an unsupervised temporal user
embedding model (i.e., it does not require any label about the cate-
gory of the user to be learned) that is able to extract latent features
for each user automatically. Given a certain user u, these features
take into account the entire temporal evolution of all the posted
reviews from all users who reviewed the same products of the user
u. In summary, the main strengths of this approach include:

• The entire historical sequence of the reviews can be recon-
structed given the embedding features. Thus, we do not
suffer from information loss as other existing methods that
rely on aggregation of user information;

• Since for each user we also consider the reviews of their
peers, the obtained sequences of reviews are usually large
enough to allow the neural network embedding to be trained
and produce significant embedding features. This allows us
to classify users who reviewed a few products and whose
history is, therefore, hard to leverage.

We report the results of our approach on a large dataset of Ama-
zon reviews with fraudulent reviewer ground truth [4]. Our results

Session 1: Trusted Environment CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

30

DeepTrust: An Automatic Framework to Detect Trustworthy Users in Opinion-based Systems CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

show a drastic improvement in the detection of fraudulent review-
ers as compared to related approaches. In addition, DeepTrust can
detect trustworthy, uninformative, and fraudulent users with an
F1-measure of 0.93. Also, we drastically improve on detecting fraud-
ulent reviewers (AUROC of 0.97 and average precision of 0.99 when
combining DeepTrust with the F&G algorithm) as compared to
REV2 state-of-the-art methods (AUROC of 0.79 and average preci-
sion of 0.48). Moreover, we show that DeepTrust performances do
not decrease in the case of cold start users, and DeepTrust overper-
forms all the baselines approaches.

2 RELATEDWORK
Knowing the trustworthiness or reputation of a node u in opinion-
based systems allows other peers to assign the right value to u’s
judgments. Typically, the trustworthiness of a node is computed
as a global trust value taking into account the interactions of a
node with other nodes or items in the system [6, 10]. Specifically to
opinion-based systems where users provide their opinions of items
or products and not of other users as, for instance, in Amazon, sev-
eral works have been proposed that have the common denominator
of computing a trustworthiness score for each user and a goodness
score for each item reflecting the rating the item actually deserves.
These algorithms assume to work with a bipartite user-item rating
network (cf. Figure 2 for an example).

Mishra and Bhattacharya [14] proposed the Bias and Deserve
(BAD) algorithm for computing the trustworthiness of a node as
a bias quantifying the tendency of the node in overestimating or
underestimating the rating an item deserves (the higher the bias, the
less the trustworthiness of the node). The algorithm also computes
a deserve score for each item that takes into account the bias of the
users that are ranking that item. The bias and deserve scores are
computed by a pair of mutually recursive equations.

Similarly, Kumar et al. [12] defined the Fairness and Goodness
(F&G) algorithm, which computes a fairness score for each user and
a goodness score for each item. Specifically, the fairness of a user
is a measure of how fair or trustworthy the user is in rating items.
Intuitively, a ‘fair’ or ‘trustworthy’ rater should give an item the
rating that it deserves, while an ‘unfair’ one would deviate from
that value. The latter could be the case of a fraudulent user who is
trying to promote (resp. demote) a bad (resp. good) item or a user
that is in good faith but unreliable or uninformative. The goodness
of an item specifies how much users in the system like the item
and what its true quality is. Fairness and goodness are mutually
recursively computed. Specifically, the goodness of an item is given
by the average of its rating where each rating is weighted by the
fairness of the rater, while the fairness of a user considers how
much the ratings a user gives are far from the goodness of the
items. The higher the fairness, the more trustworthy the user is.

Recently, Kumar et al. [11] proposed the REV2 algorithm, which
is an extension of the F&G algorithmwhere they compute a fairness
score for each user, a goodness score for each item and a reliability
score for each rating as they argue that fraudulent users can also
give reliable rating to increase their reputation and fair users can
sometimes give unreliable rating, as in case of the class of unre-
liable or uninformative users we want to detect. Again, fairness
is a measure of how trustworthy a user is, and a fair user is one

that assigns reliable ratings that are close to the goodness of the
items. REV2 computes fairness, goodness, and reliability by using a
set of mutually recursive equations where they also combine user
behavioral properties computed via the BirdNest algorithm [8].

Trustiness [20] is another algorithm similar to the above-mentioned
ones that computes a trustworthiness score for each user, an hon-
esty score for each item, and a reliability score for each rating.

Regarding the detection of fraudulent users (or opinion spam-
mers) in opinion-based systems specifically, existing work can be
categorized into network-based methods, behavioral-based meth-
ods, and hybrid methods combining both network and behavioral
properties. BAD, F&G, and Trustiness can be used to detect fraudu-
lent users as well, and they can be categorized as network-based
algorithms. FraudEagle [2] is another network-based algorithm that
models the user-item bipartite rating network as a Markov Random
Field and computes an anomaly score for each user that is used
to identify the opinion spammers. They assume that honest (resp.
fraudulent) reviewers are more likely to give positive ratings to
good (resp. bad) products and honest (resp. fraudulent) reviewers
are more likely to give negative ratings to bad (resp. good) products.

Behavioral-based methods leverage the fact that fraudulent re-
viewers write many, shorter, positive (4 or 5 stars) and self-similar
reviews in short bursts of time [5, 9, 15, 16]. SpamBehavior [13]
proposes ranking and supervised methods exploiting the fact that
opinion spammers target a specific set of products and their ratings
deviate from the ones of benign users. BirdNest [8] detects opinion
spammers according to the fact that (i) fake reviews occur in short
bursts of time and (ii) fraudulent user accounts have skewed rating
distributions.

Among hybrid methods, SpEagle [17] extends FraudEagle by
combining both the user-review-product graph and metadata such
as text, timestamps, and ratings to detect fraudulent users, reviews,
and targeted products. REV2 combines both network and behav-
ioral properties (by incorporating the user BirdNest anomalous
score) and is the state-of-the-art algorithm in detecting fraudulent
users in opinion-based systems. In this paper, we extensively com-
pare with REV2 (and other algorithms presented in this section) and
show that our proposed DeepTrust user embedding technique signifi-
cantly outperforms REV2 and other algorithms under different settings.
Also, DeepTrust can identify uninformative reviewers, which are not
considered in prior work, to avoid they are mistakenly classified as
fraudulent users, and addresses the cold start user problem.

3 DEEPTRUST USER EMBEDDING
In this section, we describe DeepTrust, a deep-learning-based ap-
proach to extract user features from their temporal review sequence
in an unsupervised way. An “embedding” is a technique to trans-
form an input sequence into a k-dimensional vector. Once the
embedding is obtained for each user, its vectorial representation
can be used as features in input to machine learning algorithms. In
this paper, we use the computed user embedding to determine if a
user belongs to one of these categories: trustworthy, unreliable or
uninformative, or fraudulent.

Let U = {u1, . . . ,um } be the set of users active in the opinion-
based system, and P = {p1, . . . ,pl } be the set of products being
reviewed by users in U . We denote by R the set of all reviews

Session 1: Trusted Environment CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

31

CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA Edoardo Serra, Anu Shrestha, Francesca Spezzano, and Anna Squicciarini

LSTM

C C

Attention Layer

C C

 Concatenation
Layer

z(u*)

E
M
B
E
D
D
I
N
G

LSTMC C C C

u1

User
Embedding

Layer

p1

r1

d1

Product
Embedding

Layer

u2

p2

r2

d2

un-1

pn-1

rn-1

dn-1

un

pn

rn

dn

 Temporal Review Sequence Generated for User u*

u1 u2 un-1 un

LSTMC C C C

p1 p2 pn-1 pn

LSTMC C C C

r1 r2 rn-1 rn

LSTMC C C C

d1 d2 dn-1 dn

Fully
Connected

Layer
u*classify

h1 h2 hn-1 hn

x1 x2 xn-1 xn

Figure 3: DeepTrust architecture.

generated by users in U for products in P . Each review re ∈ R is
represented by a 4-tuple re = (u,p, r , t)whereu ∈ U is the reviewer,
p ∈ P is the product being reviewed, r ∈ {1, 2, 3, 4, 5} is the five-
star scale rating assigned by u to p, and t is the review timestamp.
Given a user u ∈ U , we define the set of products reviewed by u as
pr (u) = {p |(u,p, _, _) ∈ R}. Given a product p ∈ P , the set of users
who reviewed p is defined as us(p) = {u |(u,p, _, _) ∈ R}.

In order to define an embedding describing the behavior of a
user u∗ ∈ U in the opinion-based system, we consider, in addition
to their reviews, also the reviews from other users in the system
that can have potentially shaped u∗’s opinions or that can help
in identifying an anomalous or fraudulent behavior. We call these
reviews the context of the user u∗. For instance, users’ opinion on
a given product may change as they read other users’ reviews, or
their ratings may change slightly based on other reviewers’ ratings
of the same or similar products. Also, some reviews written by u∗
can affect the opinion of other users. Moreover, we also consider
reviews made by other users after u∗’s reviews as they can help
uncover fraudulent behavior. For instance, opinion spammers may
be engaged to promote a new (but not good) product p, which
initially is described only by spam reviews with star ratings 4 or 5.
Later, benign users start reviewing the product p and giving low
ratings. These future reviews are helpful to recognize the opinion
spammers.

Accordingly, our embedding will consider in input a sequence
of temporally ordered reviews for each user. Given a user u∗ the
sequence consists of the set of all the reviews given by u∗ plus the
reviews given by other users to the set of products reviewed by u∗
(as they can be potentially related to the behavior of u∗). Then, we
define the concept of a temporal review sequence as follows.

Definition 3.1 (Temporal Review Sequence). Given a user u∗ ∈ U ,
let re(u∗) = {(u,p, r , t) | (u,p, r , t) ∈ R, p ∈ pr (u∗)} be the subset
of reviews that describe the rating behavior of u∗ in comparison to

the ratings that other users give to the products rated by u∗. 2 The
temporal review sequence

tres(u∗) = ⟨(u0,p0, r0, t0,d0), (u1,p1, r1, t1,d1), . . . , (un ,pn , rn , tn ,dn)⟩

for the user u∗ is the set of reviews in re(u∗) ordered by the times-
tamp such that

• (ui ,pi , ri , ti) ∈ re(u∗) for each i ∈ {1, . . . ,n}
• ti−1 ≤ ti for each i ∈ {1, . . . ,n}

• di =

{
0, i = 0
ti − ti−1, i > 0

□

It is worth noting that two reviews (ui−1,pi−1, ri−1, ti−1) and
(ui ,pi , ri , ti) that occur at the same time (ti−1 = ti) will be rec-
ognized by di = 0. Moreover, we define the context of the user
u∗ as the subsequence of reviews in re(u∗) not written by u∗, i.e.,
ctx(u∗) = {(u,p, r , t) | (u,p, r , t) ∈ R, p ∈ pr (u∗),u , u∗}.

Example 3.2. Let us consider the sample user-item bipartite
rating network shown in Figure 2. We have three products P =
{p1,p2,p3} reviewed by seven users U = {u∗,u1,u2,u3,u4,u5,u6}.
Each edge is labeled with rating and review timestamp. For user
u∗, the temporal review sequence that describes their behavior is

tres(u∗) = {(u4,p2, 5, t1), (u∗,p1, 4, t2), (u1,p1, 3, t4), (u∗,p2, 4, t5),

(u2,p2, 1, t6), (u3,p1, 5, t9)}
sincep1 andp2 are the products reviewed by useru∗ andu1,u2,u3,u4
are other users reviewing same products. The context for user u∗
is given by

ctx(u∗) = {(u4,p2, 5, t1), (u1,p1, 3, t4), (u2,p2, 1, t6), (u3,p1, 5, t9)}

□

2Because of data limitation, as discussed in Section 4, behavioral analysis is limited to
users’ rating activities. However, our proposed technique can be easily extended in
case other behavioral data is available.

Session 1: Trusted Environment CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

32

DeepTrust: An Automatic Framework to Detect Trustworthy Users in Opinion-based Systems CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

3.1 DeepTrust Architecture
We compute a set of latent features describing the user behavior
that can be used as input to machine learning algorithms to classify
users as trustworthy, unreliable, or fraudulent.We learn the features
from the input user temporal review sequence in an unsupervised
way as we aim to be generic and not constrained on the particular
task we are going to use the features for.

Figure 3 illustrates DeepTrust, our proposed deep-learning archi-
tecture to compute the user embeddings. Given as input a temporal
review sequence of variable length tres(u∗), DeepTrust maps the
sequence into a fixed-size vectorial representation z(u∗) ∈ Rk . For
each element (ui ,pi , ri , ti ,di) in the sequence tres(u∗), DeepTrust
associates the IDs of the user ui and product pi with their latent
representations e(ui) and e(pi) (embeddings). These operations are
performed by the “Product Embedding Layer” and the “User Em-
bedding Layer” of the neural network.

Note that the embeddings associated with each product and
user will be determined during the training phase, i.e., they will
be trained with the entire network. Once the IDs are converted
into embeddings, the “Concatenation Layer” will concatenate, for
each element (ui ,pi , ri , ti ,di) in the sequence, the embedding of
the user e(ui), the embedding of the product e(pi), the rating ri , and
the time elapsed since the previous review (delta) di . We denote
by xi the above concatenation. Moreover, to improve the training
convergence time of our network, we scaled with a standard scaler
all the rating ri and all the deltas di . Once the concatenated repre-
sentation xi is obtained for each element at time i in the temporal
review sequence, the sequence ⟨x1, . . . ,xn⟩ is passed through a
Long Short Term Memory (LSTM) recurrent neural network [7].
Figure 4, adapted from [1], describes the architecture of a single
LSTM cell that outputs the next state ht by taking in input the
previous state ht−1 and the next symbol xt . The operations done
by the single LSTM cellC are described by the following equations:

at = ρ(Wa · [ht−1,xt])

bt = ρ(Wb · [ht−1,xt])

yt = tanh(Wy · [ht−1,xt])

дt = ρ(Wд · [ht−1,xt])

ct = ct−1 · at + bt · yt

ht = tanh(ct) · дt

where theWa ,Wb ,Wy andWд are the weights representing the
LSTM cell C and the entire LSTM neural network.

The LSTM outputs, for each element of the sequence, a vectorial
representation hi representing the sub-sequence till the element i .
We then merge the vectorial representation sequence ⟨h1, . . . ,hn⟩
via a soft attention layer that produces a unique fixed-size vectorial
representation for the temporal review sequence. The attention [3]
is a mechanism to discover parts of the sequence that are more
relevant for describing user behavior and weight them more when
computing the user embedding. The attention layer takes as input
the vectorial representation sequence ⟨h1, . . . ,hn⟩ from the LSTM
and returns the output z(u∗) = tanh(Wc [co;hn]) where

• Wc ∈ R2 |hn |× |hn | is a set of weights to learn, and
• co is the attention context vector obtained by the weighed
mean of all hi vectors, i.e., co =

∑n
i=1 c

s
i · hi .

!"
ℎ"$%

&"$%

'"

&"

(")"
ℎ"

Figure 4: Description of an LSTM cell C. Figure adapted
from [1].

The weights {cs1 , . . . , c
s
n } to compute the attention context vector

are obtained by using (1) a unique fully connected layer that, applied
singularly to each hi , produces a single value qi , and (2) a softmax
layer taking in input all {q1, . . . ,qn } and finally outputting the
{cs1 , . . . , c

s
n }.

The output z(u∗) represents the embedding of the user u∗ that
summarizes their entire temporal review sequence.

Given the embedding z(u∗), the next part of our neural network
works on the reconstruction of the input temporal review sequence
tres(u∗). The embedding z(u∗) is passed through four different
LSTMs that reconstruct the original sequences of all the sub-part
of each review: the sequence of user IDs, the sequence of product
IDs, the sequence of product ratings, and the sequence of deltas.

We use a softmax layer to reconstruct product and user se-
quences, and add to the global loss function the cross-entropy loss
for each element of the sequence. The reconstruction for the rating
and the deltas is done by adding to global loss function the mean
square loss for each element of the sequence. This ensures that the
embedding z(u∗) stores all the information contained in tres(u∗).
In addition, we pass z(u∗) through a fully connected layer that iden-
tifies the specific user u∗ who is generating the temporal review
sequence. By training this entire neural network (i.e., minimizing
the global loss function), the output is an embedding z(u) for each
user u ∈ U .

4 DATASET
We carry out our experimental evaluation on an Amazon dataset
from Fayazi et al. [4]. The dataset includes a large candidate set
of potential deceptive reviews, reviewers, and targeted products.
Deceptive reviews are retrieved by identifying products that were
targeted for manipulation in underground crowdsourcing platforms
(e.g., RapidWorkers.com, ShortTask.com, and Microworkers.com).
These platforms pay workers to post a review on a target site (e.g.,
Amazon, Yelp). The dataset also includes samples of reviews of
other products performed by suspected deceptive reviewers, along
with their profile information (i.e., reviewers whose reviews appear

Session 1: Trusted Environment CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

33

CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA Edoardo Serra, Anu Shrestha, Francesca Spezzano, and Anna Squicciarini

Table 1: Number of users for each class in the Amazon
dataset.

Class Num. of users
Fraudulent 846
Trustworthy 5,322
Unreliable 91
Unknown 7,872

in the targeted items). A review is labeled as deceptive if (i) the
review was associated with a product which was targeted by a
crowdsourced malicious task; and if (ii) the review had a high
rating and was posted within a few days after the task was posted.
Otherwise, it is labeled as a legitimate review.

For each reviewer, attributes such as helpfulness ratio (or re-
viewer helpfulness), number of helpful/unhelpful votes, and Ama-
zon rank are included. Amazon users can provide feedback on other
users’ reviews by voting if a given review is helpful or not. Thus,
given a reviewer u, their helpful ratio is given by the number of
helpful votes divided by the total number of helpful/unhelpful votes
given to all the reviews of this user. The Amazon rank, as explained
earlier in the Introduction, is assigned by taking into account the
helpfulness of the reviewer and the recency of the votes. Thus,
when reviewers receive enough helpful/unhelpful votes (we con-
sider a threshold of 20 votes in this paper), their helpfulness score
can be seen as a collective measure of user trustworthiness (when
it is high) or user unreliability (when it is low).

We filtered out reviewers who did only one review and products
that have only one review. The resulting dataset includes 94.8K
reviews, 14.1K reviewers, and 22K products. We further split re-
viewers into four classes:

• Fraudulent users: users who are marked as opinion spam-
mers (fraudulent) in the dataset.

• Trustworthy users: users who are not fraudulent and who
have at least 20 helpful votes and a helpfulness ratio ≥ 0.75.

• Unreliable or uninformative users: users who are not
fraudulent and who have at least 20 helpful votes and a
helpful ratio ≤ 0.25.

• Unknown users: users who are not fraudulent and have
less than 20 helpful votes or the helpfulness ratio is between
0.25 and 0.75. We classify them as unknown as there is not
enough evidence in the helpfulness data to reliably assign
them a classification label.

Table 1 shows the breakdown of labels in each of the above classes.
As we discuss in the next section, the obvious class imbalance
shown here is taken into account by adding appropriate weights to
our learning models.

5 EXPERIMENTS
In this section, we report an extensive experimental evaluation of
our proposed DeepTrust user embedding model and compare its
performance against several state-of-the-art algorithms.

Table 2: Precision, recall, and F1-measure results of de-
tecting trustworthy, fraudulent, and unreliable users with
DeepTrust and comparison with related work.

Algorithm Precision Recall F1-measure
DeepTrust 0.93 0.93 0.93

DeepTrust w/o context 0.81 0.54 0.58
BAD [14] 0.81 0.40 0.43
F&G [12] 0.90 0.89 0.89
REV2 [11] 0.82 0.64 0.69

Trustiness [20] 0.72 0.26 0.32

5.1 Experimental Settings
We consider threemain settings in our experiments: (1) a multi-class
problem where we classify users as trustworthy, fraudulent, or un-
reliable/uninformative; (2) a binary classification problemwhere we
detect fraudulent users (vs. trustworthy and unreliable/uninformative),
and (3) a binary classification problem where we classify trustwor-
thy vs. untrustworthy (fraudulent and unreliable/uninformative)
users. In all the experiments, unknown users are included in the
user-item rating network used for computing the temporal review
sequence we use to learn the DeepTrust features and for computing
the baselines, but unknown users are not used as instances in the
classification tasks. However, in Section 5.5, we tackle the problem
of classifying the "unknown" users in the dataset into one of the
remaining three possible categories and correlate the computed
labels with the Amazon rank for additional insights.

We report results for classification with a Random Forest model.
We also tested other classification algorithms, including Logistic Re-
gression and Support Vector Machine, but Random Forest resulted
in overall best performance.

We used class weighting to deal with class imbalance. Class
weighting is a way to learn from an unbalanced dataset where the
classification imposes, during training, a penalty proportionally in-
verse to the class distribution on the model for making classification
mistakes. We performed 10-fold cross-validation for all reported
experiments.

In regards to evaluation measures, we report weighted precision,
recall, and F1-score in the case of multi-class classification. For
binary classification, in addition to reporting the above measures
to allow comparison, we also calculate the Area Under the ROC
curve (AUROC) and Average Precision (AvgP). The best results are
highlighted in bold in the tables.

5.2 Detecting Trustworthy, Unreliable, and
Fraudulent Users

We tested our DeepTrust user embedding on the problem of clas-
sifying users as trustworthy, unreliable, and fraudulent. Table 2
reports the classification results according to precision, recall, and
F1-measure for DeepTrust (with and without context) and several
state-of-the-art approaches. Our baselines include methods to com-
pute trustworthiness scores for users in opinion-based systems.
Specifically, we compare with Bias and Deserve (BAD) [14], Fair-
ness and Goodness (F&G) [12], REV2 [11], and Trustiness [20].

Session 1: Trusted Environment CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

34

DeepTrust: An Automatic Framework to Detect Trustworthy Users in Opinion-based Systems CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

Table 3: Precision, recall, and F1-measure for Deep-
Trust combined with related work for detecting
trustworthy, fraudulent, and unreliable users.

Algorithm Precision Recall F1-measure
DeepTrust 0.93 0.93 0.93

DeepTrust + BAD 0.93 0.93 0.93
DeepTrust + F&G 0.95 0.95 0.94
DeepTrust + REV2 0.93 0.93 0.92

DeepTrust + Trustiness 0.93 0.93 0.93

Table 4: Precision, recall, and F1-measure results of detect-
ing trustworthy, fraudulent, and unreliable cold start users
with DeepTrust and comparison with related work.

Algorithm Precision Recall F1-measure
DeepTrust 0.92 0.92 0.91

DeepTrust w/o context 0.84 0.34 0.40
BAD [14] 0.02 0.12 0.04
F&G [12] 0.89 0.87 0.88
REV2 [11] 0.82 0.51 0.58

Trustiness [20] 0.001 0.03 0.001

As we can see, our DeepTrust proposed embedding technique
consistently outperforms all the other approaches. Among the com-
petitors, F&G achieves the best performance. DeepTrust improves
over F&G by 3% in precision and 4% in recall and F1-measure. More-
over, as we can see from the table, the DeepTrust performance
significantly drops when removing the context from our user se-
quences (i.e., not considering the reviews from other users on the
set of products reviewed by the given user). This further motivates
our choice of considering the user context when computing our
embedding.

Next, we combine DeepTrust with any of the existing methods
to see if we can further improve our method’s performance. To
combine DeepTrust with another method, we consider our embed-
ding features and the predictive user features of the other method
together in input to the Random Forest classifier. For instance, to
combine DeepTrust with REV2, we added to our features the user
fairness scores computed by REV2. Table 3 reports comparative
results. We see that DeepTrust+F&G yields the best combination,
which further improves DeepTrust achieving both precision and
recall of 0.95 and F1-measure of 0.94.

Addressing Cold Start Users. We also tested DeepTrust on
the problem of classifying users with short or no history (cold
start users). In our dataset, we define these "cold-start users" as
the users who completed less than four reviews. To perform this
experiment, we tested only on cold start users in each test of the 10-
fold cross-validation. Results are reported in Table 4 for DeepTrust
and baselines, and in Table 5 for the combination.

We see from the results that DeepTrust performance is pretty
stable, seemingly due to the user context in the formulation that also
allows addressing the cold start user problem. When we compare

Table 5: Precision, recall, and F1-measure for Deep-
Trust combined with related work for detecting
trustworthy, fraudulent, and unreliable cold start users.

Algorithm Precision Recall F1-measure
DeepTrust 0.92 0.92 0.91

DeepTrust + BAD 0.92 0.92 0.92
DeepTrust + F&G 0.94 0.94 0.93
DeepTrust + REV2 0.91 0.92 0.91

DeepTrust + Trustiness 0.92 0.92 0.91

results from Tables 2 and 4, we note that that DeepTrust achieves
precision, recall, and F1-measure always above 0.91 for both general
users and cold start ones. Further, we note that not knowing the
context results in lower recall performance for the cold start users
than for all the users (0.34 vs. 0.54). Specifically, by looking at the
individual class recall values, we observe that the recall drastically
drops from 0.48 to 0.27 for the class of helpful users. This is because
cold start users have just a limited number of reviews, similarly to
many fraudulent users. Consequently, benign cold start users can
be misclassified as fraudulent. Context information, on the other
hand, helps our model with additional information on the ratings
of other users to overcome the problem of having a few reviews.
This improves the recall.

Baseline methods perform worse than DeepTrust (as expected)
and, similarly to what observed before, combining DeepTrust with
F&G further improves overall performance by 2% in precision, recall,
and F1-measure (see Table 5).

5.3 Detecting Fraudulent Users
For most online platforms, the most damaging category of users is
that of fraudulent users who spoil the community posts with fake
content. Accordingly, we test our embedding on its ability to detect
fraudulent users specifically. As this is a binary classification prob-
lem, we report Average Precision and AUROC scores in addition to
precision, recall, and F1-Measure. Moreover, we compare our pro-
posed DeepTrust with five state-of-the-art algorithms specifically
defined for fraudulent user detection in opinion-based systems,
namely FraudEagle [2], Bias and Deserve (BAD) [14], SpamBehav-
ior [13], ICWSM’13 [16], and REV2 [11]. We chose these algorithms
as they are the top-five best-performing algorithms according to the
experiments done for supervised classification in [11] on a similar
Amazon dataset. Moreover, we also included the Fairness and Good-
ness (F&G) algorithm in the comparison as it was not included in
the experimental evaluation performed in [11]. Results are shown
in Table 6. As we can see, DeepTrust significantly outperforms all
the competitors according to all the measures considered on the
task of detecting fraudulent users, especially in terms of average
precision for fraudulent user detection (+17%). Also in this setting,
dropping the context information from the computation of our user
embedding decreases the performance. Among the competitors,
F&G is the best method according to all performance measures. As
we can see from the last row of Table 6, when we combine Deep-
Trust+F&G we further improve: F1-measure of 0.96, AUROC of 0.97,
and average precision of 0.99 (an improvement of 5% in F1-measure,

Session 1: Trusted Environment CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

35

CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA Edoardo Serra, Anu Shrestha, Francesca Spezzano, and Anna Squicciarini

Table 6: Classification result for fraudulent user detection:
precision, recall, F1-measure, AUROC, and average preci-
sion (AvgP).

Algorithm Precision Recall F1 AUROC AvgP
DeepTrust 0.94 0.95 0.94 0.94 0.88
DeepTrust
w/o context 0.84 0.59 0.64 0.72 0.31
REV2 [11] 0.84 0.67 0.71 0.79 0.48
BAD [14] 0.85 0.51 0.56 0.69 0.25

FraudEagle [2] 0.85 0.64 0.69 0.77 0.35
SpamBehavior [13] 0.88 0.87 0.88 0.84 0.57
ICWSM’13 [16] 0.89 0.88 0.88 0.86 0.59

F&G [12] 0.92 0.91 0.91 0.91 0.71
DeepTrust+F&G

(Best combination) 0.96 0.96 0.96 0.97 0.99

6% in AUROC and 28% in average precision as compared to F&G
performances). All the other combinations of DeepTrust with base-
lines achieve worse results than DeepTrust+F&G as reported in
Table 8 in the Appendix.

5.4 Classifying Trustworthy vs. Untrustworthy
Users

We now analyze the ability of DeepTrust in detecting trustworthy
vs. untrustworthy users (fraudulent and unreliable/uninformative)
via a binary classification problem. We aim to identify trustworthy
users in opinion-based systems so that other users in the platform
can rely on their reviewswhen buying products. In comparingDeep-
Trust with other works, we consider all the algorithms for trustwor-
thiness and fraudulent user detection used in Sections 5.2 and 5.3.
Results are reported in Table 7. Also in this setting, DeepTrust with
the user context outperforms all the competitors achieving an F1-
measure of 0.93, an AUROC of 0.92, and an average precision of
0.97.

As we can see from the last row of Table 7, when we combine
DeepTrust with F&G (which also in this case is the best performing
baseline), we further improve the classification: F1-measure of 0.95,
AUROC of 0.94, and average precision of 0.98. All the other com-
binations of DeepTrust with baselines achieve worse results than
DeepTrust+F&G as reported in Table 9 in the Appendix.

5.5 Classifying Unknown Users
Finally, we carried an additional experiment attempting to classify
users’ whose status is "unknown" (see Section 4). We trained our
model using trustworthy, unreliable, and fraudulent users and use
as test-set the unknown users.

We used our best feature set, i.e., DeepTrust+F&G 3, for training
a Random Forest classifier. In order to interpret the quality of our
labels, since no other ground truth is available, we relied on Amazon
Ranking, and specifically the rank assigned to users. Figure 5 shows
the unknown users ordered by the Amazon rank (on the x-axes)
along with our prediction: trustworthy users are shown in green,

3We considered the user fairness feature from F&G.

Table 7: Classification result for trustworthy vs.
untrustworthy user detection: precision, recall, F1-measure,
AUROC, and average precision (AvgP).

Algorithm Precision Recall F1 AUROC AvgP
DeepTrust 0.93 0.95 0.93 0.92 0.97
DeepTrust
w/o context 0.82 0.58 0.63 0.71 0.89
REV2 [11] 0.82 0.68 0.70 0.77 0.92
BAD [14] 0.83 0.52 0.56 0.68 0.88

FraudEagle [2] 0.82 0.64 0.66 0.73 0.91
SpamBehavior [13] 0.87 0.85 0.86 0.83 0.94
ICWSM’13 [16] 0.87 0.86 0.86 0.84 0.94

F&G [12] 0.90 0.91 0.90 0.88 0.96
Trustiness [20] 0.74 0.61 0.65 0.60 0.85
DeepTrust+F&G

(Best combination)) 0.95 0.95 0.95 0.94 0.98

unreliable in yellow, and fraudulent in red. Since the lower the rank,
the better the reviewer is, we expect to see in Figure 5 that a higher
frequency of trustworthy users are on the left (low rank), unreliable
users are mostly in the middle, and fraudulent users are on the right
side of the figure (high rank).

As the figure shows, our prediction follows this pattern very
closely. In fact, the top-ranked users are correctly predicted as
trustworthy, and the majority of untrustworthy users (fraudulent
and unreliable users) appear on the right side. Specifically, 74% of
the predicted fraudulent users and 80% of the users predicted as
unreliable have a rank higher than 4,000.

Observe that, within our predicted fraudulent and unreliable/
uninformative users, some of them (9 fraudulent and 15 unreliable
users) rank relatively high, between 1,500 and 2,500. This is sug-
gestive of a possible bias in either our results or in the ranking
system itself. While it is not possible to point to a specific error
on either side, we note that while Amazon ranks are accepted as
strong indicators of the quality of reviewers (and this is consistent
with our findings), Amazon ranking method is known to be vul-
nerable to biases, and fraudulent users may reach high ranks (see
Figure 1). We speculate that some of the anomalies in our findings
are examples of such users’ ability to climb the ranking system.

6 DISCUSSION
This work contributes to the state-of-the-art on trustworthiness
detection in opinion-based systems. Our approach is able to detect
both trustworthy and malicious users and leverages review traces
of users across products. Despite its strengths, our approach is
not privy of limitations. We summarize some open issues in what
follows.

• Trustworthiness: In the context of opinion-based systems, a
trustworthy reviewer is a userwith a record ofwell-perceived
reviews by readers or testers/users of the items reviewer
commented on. Hence, trust in recommender systems (or
opinion-based systems) is sometimes defined as “compe-
tence” or “confidence,” to distinguish it from conventional
trust notions wherein trust is based on principals’ identities

Session 1: Trusted Environment CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

36

DeepTrust: An Automatic Framework to Detect Trustworthy Users in Opinion-based Systems CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

Figure 5: Classification of unknown users as trustworthy (green), unreliable (yellow), and fraudulent (red) and correlation
with the Amazon rank.

and credentials [18, 19, 21]. As the definition is often not
robust, fraudulent users or users whose behavior changes
over time may mistakenly be labeled as trustworthy.

• Limitations of method: We have assumed opinion-based sys-
tems where the rater and the item being rated are two dif-
ferent entities, e.g., in the case of Amazon, we have users
rating products. However, there are other types of opinion-
based systems where users rate other users. As an example,
in Bitcoin trade networks, users rate the level of trust they
have in other users [12]. The definition of temporal review
sequence we have given in this work does not fit the case of
user-user opinion-based systems as a user u should be con-
sidered fraudulent according to how badly she/he is judged
by other benign users, rather than how u judges other users.
Thus, we should consider u’s incoming edges from the user-
user rating network to build the temporal review sequence
of user u rather than the outgoing edges, as in the case of
the user-item rating network. Further, the notion of context
should be adapted to the case of user-user opinion-based
systems. We plan to investigate this case as future work.

• Evolution of users:We have assumed that users do not change
status, i.e., they are either malicious or not, with no possible
state change. That is to say, the temporal sequence does not
reveal an evolving pattern and users are labeled as trust-
worthy (or otherwise) regardless of the incidence of fake
reviews (e.g., if a user posts one fake review she/he is la-
beled untrustworthy or fraudulent, even if other reviews
were actually authentic). This may create some noise in the
temporal sequences, in addition to being unrealistic. A soft
label approach may be needed to better account for users’
changing of behavior.

7 CONCLUSIONS
In this paper, we proposed a supervised approach to identify trust-
worthy reviewers in an opinion-based system. We presented the
problem of detecting trustworthy reviewers as a multi-class classi-
fication problem, wherein users may be fraudulent, unreliable or

uninformative, or trustworthy. We address the problem by means
of a temporal user embedding based on a deep recurrent neural
network. We automatically learn relevant features from the input
user temporal review sequence in an unsupervised way and use
these features for classifying users into trustworthy, unreliable, or
fraudulent. Our proposed approach outperforms existing methods
under different settings and is able to effectively learn minority
classes of users whose behavior is unknown or cannot be learned
from the existing traces.

ACKNOWLEDGEMENTS
Serra and Spezzano were partially supported by the Army Research
Office under grant W911NF-19-1-0438. Squicciarini was partially
supported by the National Science Foundation under grant 1453080.

REFERENCES
[1] [n. d.]. LSTM description. https://colah.github.io/posts/2015-08-Understanding-

LSTMs/.
[2] Leman Akoglu, Rishi Chandy, and Christos Faloutsos. 2013. Opinion Fraud

Detection in Online Reviews by Network Effects. In Proceedings of the Seventh
International Conference on Weblogs and Social Media, ICWSM 2013, Cambridge,
Massachusetts, USA, July 8-11, 2013.

[3] Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and
Yoshua Bengio. 2015. Attention-based models for speech recognition. InAdvances
in neural information processing systems. 577–585.

[4] Amir Fayazi, Kyumin Lee, James Caverlee, and Anna Cinzia Squicciarini. 2015.
Uncovering Crowdsourced Manipulation of Online Reviews. In Proceedings of
the 38th International ACM SIGIR Conference on Research and Development in
Information Retrieval, Santiago, Chile, August 9-13, 2015. 233–242.

[5] Geli Fei, Arjun Mukherjee, Bing Liu, Meichun Hsu, Malú Castellanos, and Rid-
dhiman Ghosh. 2013. Exploiting Burstiness in Reviews for Review Spammer
Detection. In Proceedings of the Seventh International Conference on Weblogs and
Social Media, ICWSM 2013, Cambridge, Massachusetts, USA, July 8-11, 2013.

[6] Jennifer Golbeck, James Hendler, et al. 2006. Filmtrust: Movie recommendations
using trust in web-based social networks. In Proceedings of the IEEE Consumer
communications and networking conference, Vol. 96. 282–286.

[7] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[8] Bryan Hooi, Neil Shah, Alex Beutel, Stephan Günnemann, Leman Akoglu, Mohit
Kumar, Disha Makhija, and Christos Faloutsos. 2016. BIRDNEST: Bayesian Infer-
ence for Ratings-Fraud Detection. In Proceedings of the 2016 SIAM International
Conference on Data Mining, Miami, Florida, USA, May 5-7, 2016. 495–503.

[9] Parisa Kaghazgaran, James Caverlee, and Anna Cinzia Squicciarini. 2018. Com-
bating Crowdsourced Review Manipulators: A Neighborhood-Based Approach.

Session 1: Trusted Environment CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

37

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA Edoardo Serra, Anu Shrestha, Francesca Spezzano, and Anna Squicciarini

Table 8: Precision, recall, F1-measure, AUROC, and average precision (AvgP) for DeepTrust combined with related work for
detecting fraudulent users.

Algorithm Precision Recall F1 AUROC AvgP
DeepTrust 0.94 0.95 0.94 0.94 0.88

DeepTrust + BAD 0.95 0.95 0.94 0.95 0.89
DeepTrust + F&G 0.96 0.96 0.96 0.97 0.99
DeepTrust + REV2 0.94 0.94 0.94 0.95 0.88

DeepTrust + FraudEagle 0.93 0.93 0.93 0.93 0.86
DeepTrust + SpamBehavior 0.93 0.94 0.93 0.92 0.85
DeepTrust + ICWSM’13 0.94 0.94 0.93 0.93 0.87
DeepTrust + Trustiness 0.95 0.95 0.94 0.96 0.89

Table 9: Precision, recall, F1-measure, AUROC and average precision (AvgP) of combining DeepTrust with related work for
detecting trustworthy users.

Algorithm Precision Recall F1 AUROC AvgP
DeepTrust 0.93 0.95 0.93 0.92 0.97

DeepTrust + BAD 0.93 0.93 0.93 0.93 0.98
DeepTrust + F&G 0.95 0.95 0.95 0.94 0.98
DeepTrust + REV2 0.93 0.93 0.93 0.92 0.97

DeepTrust + FraudEagle 0.93 0.93 0.93 0.92 0.97
DeepTrust + SpamBehavior 0.93 0.94 0.93 0.92 0.97
DeepTrust + ICWSM’13 0.94 0.94 0.93 0.93 0.98
DeepTrust + Trustiness 0.93 0.93 0.93 0.93 0.98

In Proceedings of the Eleventh ACM International Conference on Web Search and
Data Mining, WSDM 2018, Marina Del Rey, CA, USA, February 5-9, 2018. 306–314.

[10] Sepandar D Kamvar, Mario T Schlosser, and Hector Garcia-Molina. 2003. The
eigentrust algorithm for reputation management in p2p networks. In Proceedings
of the 12th international conference on World Wide Web. 640–651.

[11] Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and
V. S. Subrahmanian. 2018. REV2: Fraudulent User Prediction in Rating Platforms.
In Proceedings of the Eleventh ACM International Conference on Web Search and
Data Mining, WSDM 2018, Marina Del Rey, CA, USA, February 5-9, 2018. 333–341.

[12] Srijan Kumar, Francesca Spezzano, V. S. Subrahmanian, and Christos Faloutsos.
2016. Edge Weight Prediction in Weighted Signed Networks. In IEEE 16th Inter-
national Conference on Data Mining, ICDM 2016, December 12-15, 2016, Barcelona,
Spain. 221–230.

[13] Ee-Peng Lim, Viet-An Nguyen, Nitin Jindal, Bing Liu, and Hady Wirawan Lauw.
2010. Detecting product review spammers using rating behaviors. In Proceedings
of the 19th ACM Conference on Information and Knowledge Management, CIKM
2010, Toronto, Ontario, Canada, October 26-30, 2010. 939–948.

[14] Abhinav Mishra and Arnab Bhattacharya. 2011. Finding the bias and prestige of
nodes in networks based on trust scores. In Proceedings of the 20th International
Conference on World Wide Web, WWW 2011, Hyderabad, India, March 28 - April 1,
2011. 567–576.

[15] Arjun Mukherjee, Abhinav Kumar, Bing Liu, Junhui Wang, Meichun Hsu, Malú
Castellanos, and Riddhiman Ghosh. 2013. Spotting opinion spammers using
behavioral footprints. In The 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA, August 11-14,

2013. 632–640.
[16] Arjun Mukherjee, Vivek Venkataraman, Bing Liu, and Natalie S. Glance. 2013.

What Yelp Fake Review Filter Might Be Doing?. In Proceedings of the Seventh
International Conference on Weblogs and Social Media, ICWSM 2013, Cambridge,
Massachusetts, USA, July 8-11, 2013.

[17] Shebuti Rayana and Leman Akoglu. 2015. Collective Opinion Spam Detection:
Bridging Review Networks and Metadata. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Sydney, NSW,
Australia, August 10-13, 2015. 985–994.

[18] Matthew Richardson, Rakesh Agrawal, and Pedro Domingos. 2003. Trust man-
agement for the semantic web. In International semantic Web conference. Springer,
351–368.

[19] Sini Ruohomaa and Lea Kutvonen. 2005. Trust management survey. In Interna-
tional Conference on Trust Management. Springer, 77–92.

[20] Guan Wang, Sihong Xie, Bing Liu, and Philip S. Yu. 2012. Identify Online Store
Review Spammers via Social Review Graph. ACM TIST 3, 4 (2012), 61:1–61:21.

[21] Giorgos Zacharia and Pattie Maes. 2000. Trust management through reputation
mechanisms. Applied Artificial Intelligence 14, 9 (2000), 881–907.

APPENDIX
This appendix reports all classification results when we combine
DeepTrust with baselines for the problems of detecting fraudulent
users (Table 8) and trustworthy vs. untrustworthy users (Table 9).

Session 1: Trusted Environment CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

38

	Abstract
	1 Introduction
	2 Related Work
	3 DeepTrust User Embedding
	3.1 DeepTrust Architecture

	4 Dataset
	5 Experiments
	5.1 Experimental Settings
	5.2 Detecting Trustworthy, Unreliable, and Fraudulent Users
	5.3 Detecting Fraudulent Users
	5.4 Classifying Trustworthy vs. Untrustworthy Users
	5.5 Classifying Unknown Users

	6 Discussion
	7 Conclusions
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 2 to page 15
 Mask co-ordinates: Horizontal, vertical offset 38.42, 721.56 Width 541.57 Height 18.30 points
 Origin: bottom left

 1
 0
 BL

 2
 SubDoc
 15

 CurrentAVDoc

 38.422 721.5597 541.5669 18.2962

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 9
 9

 1

 HistoryList_V1
 qi2base

